Quick Order |All Online Ordering|Product Catalog Ordering|Oligo Modifications List|Product Info & Literature|Oligo Design Tools/Resources

Methyl Phosphonate dA (mp)dA

picture of Methyl Phosphonate dA (mp)dA

Modification : Methyl Phosphonate dA (mp)dA

Catalog Reference Number
Modification Code
5 Prime
3 Prime
Molecular Weight (mw)
Extinction Coeficient (ec)
Technical Info (pdf)
Absorbance MAX
Emission MAX
Absorbance EC

Nuclease Resistance

Catalog NoScalePrice
26-6611-0550 nmol$65.00
26-6611-02200 nmol$65.00
26-6611-011 umol$84.00
26-6611-032 umol$126.00
26-6611-1010 umol$676.00
26-6611-1515 umol$845.00

Methyl phosphonate (mp) modification makes the phoshodiester linkage neutral charged. The solubility of the oligo in aqueous solutions slowly decreases with increasing mp linkages; consider incorporating as many standard phosphodiester linkages as well in the oligo. Increasing percentage of DMSO from 0.5 to 10% may be used to solubilize the oligo.

Methyl phosphonoamidites are deoxynucleoside amidites modified such that, when incorporated into an oligonucleotide, that base position will have a (electrically neutral) methyl phosphonate backbone linkage instead of the standard (negatively charged) phosphodiester linkage. Oligos containing one or more methyl phosphonate linkages will be resistant to nuclease degradation at those positions, and the lack of charge improves intracellular transport. Because of these properties, methyl phosphonolated oligos have been explored as anti-sense reagents (1). However, since methyl phosphonate linkages lower the oligos cellular uptake (2) as well as the Tm of the duplex formed with its RNA target (3), and, most importantly, also interferes with activation of RNase H activity (4), considerable care must taken in choosing which, and how many, methyl phosphonate linkages to incorporate into a putative anti-sense oligo. In that regard, we note that 2-O-Methyl RNA oligos containing a single 3-end methyl phosphonate cap (to eliminate 3-exonuclease degradation) have been successfully used as anti-sense reagents (5). In addition, DNA extension primers containing such a "cap" have been used to characterize the nuclease activity of the yeast telomerase complex (6). Methylphosphonolated anti-sense oligos have also been used successfully to mask sites in U1 and U2 snRNPs required for spliceosome formation, and thus interfere with mRNA splicing (7). Many of the unique properties of methylphosphonolated oligos are due to the introduction of chirality into the phosphodiester backbone by the methyl group (8).

1. Sarin, P.S., Agrawal, S., Civeira, M.P., Goodchild, J., Ikeuchi, T., Zamecnik, P.C. Inhibition of acquired immunodeficiency syndrome virus by oligodeoxynucleoside methylphosphonates. Proc. Natl. Acad. Sci. USA (1988), 85: 7448-7451.
2. Blake, K.R., Murakami, A., Spitz, S.A., Glave, S.A., Reddy, M.P., Tso, P.O., Miller, P.S. Hybridization arrest of globin synthesis in rabbit reticulocyte lysates and cells by oligodeoxyribonucleoside methylphosphonates.Biochemistry (1985), 24: 6139-6145.
3. Kibler-Herzog, L., Zon, G., Uznanski, B., Whittier, G, Wilson, W.D. Duplex stabilities of phosphorothioate, methylphosphonate, and RNA analogs of two DNA 14-mers. Nucleic Acids Res. (1991), 19: 2979-2986.
4. Walder, J. Antisense DNA and RNA: progress and prospects. Genes Dev. (1988), 2: 502-504.
5. Prater, C.E., Miller, P.S. 3-Methylphosphonate-Modified Oligo-2-O-methylribonucleotides and Their Tat Peptide Conjugates: Uptake and Stability in Mouse Fibroblasts in Culture. Bioconjugate Chem. (2004), 15: 498-507.
6. Niu, H., Xia, J., Lue, N.F. Characterization of the Interaction between the Nuclease and Reverse Transcriptase Activity of the Yeast Telomerase Complex. Mol. Cell. Biol. (2000), 20: 6806-6815.
7. Temsamani, J., Agrawal, S., Pederson, T. Biotinylated Antisense Methylphosphonate OligodeoxynucleotidesInhibition of Spliceosome Assembly and Affinity Selection for U1 and U2 Small Nuclear RNPs. J. Biol. Chem. (1991), 266: 468-472.
8. Thiviyanathan, V., Vyazovkina, K.V., Gozansky, E.K., Bichenchova, E., Abramova, T.V., Luxon, B.A., Lebedev, A.V., Gorenstein, D.G. Structure of Hybrid Backbone Methylphosphonate DNA Heteroduplexes: Effect of R and S Stereochemistry. Biochemistry. (2002), 416: 827-838.
- Methyl Phosphonate dA (mp)dA

Oligonucleotide Synthesis |  Flourescent Molecular Probes |  Gene Detection Systems |  Tools & Reagents |  Gene Assays |  RNAi
© 2017 Gene Link |  Terms & Conditions |  Licenses |  Privacy Policy |  June 24, 2017 3:29:02 AM