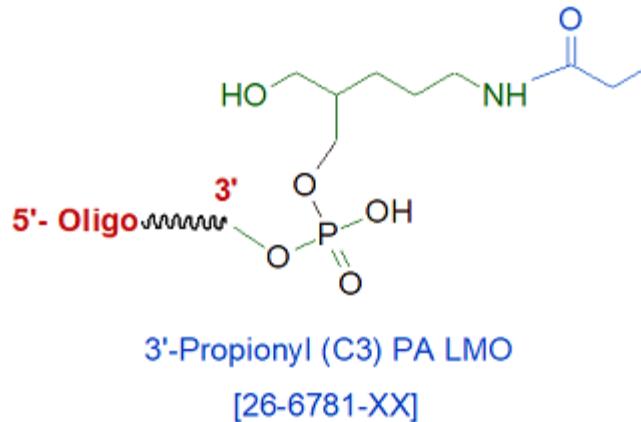


Product Specifications


Custom Oligo Synthesis, antisense oligos, RNA oligos, chimeric oligos, Fluorescent dyes, Affinity Ligands, Spacers & Linkers, Duplex Stabilizers, Minor bases, labeled oligos, Molecular Beacons, siRNA, phosphonates Locked Nucleic Acids (LNA); 2'-5' linked Oligos

Oligo Modifications

For research use only. Not for use in diagnostic procedures for clinical purposes.

Propionic acid (C3) Modified Oligo

Category	Antisense
Modification Code	3-PA-C3
Reference Catalog Number	26-6781
5 Prime	N
3 Prime	Y
Internal	N
Molecular Weight(mw)	250.21

Propionyl (C3) PA LMO

Gene Link offers a wide range of lipid modified oligos for cellular delivery. [Click here](#) to see the complete list.

Lipid modified oligos (LMO; lignoceric, palmitic, cholesterol, Propionyl (C3) PA, Butyl (C4) BA, Linolyl (C18:2) LA, Alpha ω linolyl (C18:3 α) ALA, Gamma ω linolyl (C18:3 γ) GLA, Dihomo ω gamma ω linolyl (C20:3) DGLA, Arachidonyl (C20:4) AA, Eicosapent (20:5) EPA etc.).

Oligonucleotides are predominantly hydrophilic species and require help in permeating cell membranes. One strategy to improve cellular uptake of therapeutic oligonucleotides is to conjugate them with non-toxic, lipophilic molecules. Gene Link offers cholestryl TEG, alpha-tocopherol and stearyl labelling of oligonucleotides and this strategy has proved to be useful for delivering therapeutic oligonucleotides to a broad distribution of targets.

Stearyl Modification

Stearyl Modification is C18 lipid, it is an economical and effective carrier molecule. We envisage that the 5'-stearyl group will become a favored lipophilic carrier for experimentation with synthetic oligonucleotides.

Cholesterol TEG Modification

Cholesterol TEG Modification is a lipophilic modification aiding in cellular delivery. The TEG linker arm facilitates solubility issues of the oligo making it soluble in aqueous buffers.

alpha-tocopherol TEG Modification

Similar to cholesterol TEG, alpha-tocopherol (vitamin E) is both lipophilic and non-toxic even at high doses so would be an excellent candidate as a lipophilic carrier for oligonucleotides. The TEG linker arm facilitates solubility issues of the oligo making it soluble in aqueous buffers.

GalNAc

A more directed approach to the delivery of therapeutic oligonucleotides specifically to the liver has been to target the asialoglycoprotein receptor (ASGPR) using a suitable glycoconjugate. Indeed, ASGPR is the ideal target for delivery of therapeutic oligonucleotides to the liver since it combines tissue specificity, high expression levels and rapid internalization and turnover. The use of oligonucleotide glycoconjugates has led to significant advances in therapeutic delivery as evidenced by the work of Alnylam Pharmaceuticals which has developed multivalent N-acetylgalactosamine (GalNAc) conjugated siRNAs that bind at nanomolar levels to ASGPR (1).

A similar strategy has been applied at Ionis Pharmaceuticals directed at the development of antisense oligonucleotide therapeutics (2).

The GalNAc ligand originally used by Alnylam is the triantennary ligand would seem to lend itself to formation by post synthesis conjugation to the 3' terminus but a complex trivalent GalNAc support would also be perfectly applicable, if challenging to produce. However, an alternative approach using a monovalent GalNAc support with two additions of a monovalent GalNAc phosphoramidite was also described and yielded a trivalent GalNAc structure. This (1+1+1) trivalent GalNAc structure led to GalNAc modified siRNA oligos with potency equal to the equivalent siRNA with the triantennary GalNAc ligand both *in vitro* and *in vivo*.

A further report on antisense oligonucleotides demonstrated (4) the effectiveness of modifying at the 5' terminus using monovalent GalNAc ligands. Up to five GalNAc monomers were added in a serial manner (Figure 3) and it was shown that activity of the antisense oligonucleotides improved as the number of GalNAc units increased. The authors also showed that phosphodiester linkages between the GalNAc units were preferable to phosphorothioate linkages in their testing (4).

Recommended Further Reading

N-acetylgalactosamine (GalNAc) Oligo Application Note: Glen Report 29.14: N-acetylgalactosamine (GalNAc)

Oligonucleotide Conjugates

References. Adapted from Glen Research Reports. <http://www.glenresearch.com/GlenReports/GR29-14.html>

1. J.K. Nair, et al., *J Am Chem Soc*, 2014, 136, 16958-61.

2. T.P. Prakash, et al., *Bioorganic & Medicinal Chemistry Letters*, 2015, 25, 4127-4130.

3. K.G. Rajeev, et al., *Chembiochem*, 2015, 16, 903-8.

4. T. Yamamoto, M. Sawamura, F. Wada, M. Harada-Shiba, and S. Obika, *Bioorganic & Medicinal Chemistry*, 2016, 24, 26-32.