

	Cr	rude Desal	lted	R	PC Purified	1**		Gel Purified			
20 mer oligo* Typical yield				30 mer oligo Typical yield		50 mer oligo* Typical yield					
Scale	A ₂₆₀ Units	nmols	mg	A ₂₆₀ Units	nmols	mg	A ₂₆₀ Units	nmols	mg		
50 nmol	8-10	30+	0.2-0.3	4-5	12+	0.1-0.16	NR* [1-2]	NR* [2-4]	NR* [0.03-0.06]		
200 nmol	20-25	80+	0.6-0.8	8-12	24+	0.26-0.4	4-6	8+	0.13-0.2		
1 µmol	100-120	400+	3-4	40-50	30+	1.3-1.6	20-25	40+	0.6-0.8		
Purity & Yield	Purity is great depending on structure. Refet table for oligo and yield. No further pu PCR and sequ Gel purificatii gos above 50 involving clore	oligo seque er to couplir o length dep urification re encing appl on recomme mer and all	ence and ng efficiency endent purity equired for lications. ended for oli- l applications	Purity 85% t depending on structure. Yield and puri sequences wit Not recommer than 35 mer. **RPC is reverse cartridge; a subs	oligo seque ity will be lo th high GC c nded for olig phase purificat	ower for ontent. los longer ion using a	Purity 98% to ~100% depending on oligo sequence and st ture. Yield will gradually decrease as lengt oligo increases. Palindromes, hairpin high GC content oligos and oligos cc taining stretches of 3 or more G's in strong secondary structure and base stacking thus decreasing purity and NR* Not Recommended				

*Yield of $30 \mu g/A_{260}$ unit for oligos is calculated for an ~equimolar base composition. Long stretches of a single base or homopolymers will have variable yields. Example for homopolymeric 50 mer: A(50) = $\sim 20/A_{260}$ Unit; G(50) = $\sim 28/A_{260}$ Unit; T(50) = $\sim 35/A_{260}$ Unit and C(50) = $\sim 39/A_{260}$ Unit.

Unmodified DNA Oligo Synthesis*

Scale of Synthesis	Catalog No.	Price (\$)
50 nmol	26-6400-05	0.90
200 nmol	26-6400-02	2.00
1 µmol	26-6400-01	3.75
2 µmol	26-6400-03	6.50
10 µmol	26-6400-10	32.00
15 µmol	26-6400-15	38.00

*minimum charge for 15 mer applies. Please visit www.genelink.com for current list prices. Call for institutional discount pricing structure.

Same Day Oligo*

Design your oligos today and use them tomorrow morning! Investigators who just can not wait order our rush service (order by 12 noon EST). We ship the same day for next early morning delivery in the US and 72 hours for most international destinations.

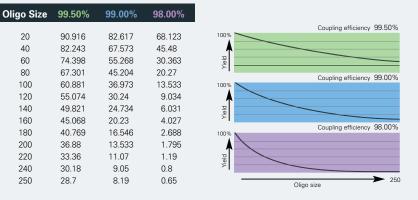
* Turn-around time stated is for unmodified oligos. Please inquire about purified and modified oligos

Purification

	Scale of Synthe	le of Synthesis Price (\$)/purification					
Product	Catalog No.	50 nmol	200 nmol	1 µmol	2 µmol	10 µmol	15 µmol
Gel Purification	26-6400-XX	75.00	75.00	150.00	280.00	1500.00	1800.00
Reverse Phase Cartridge	26-6400-XX	30.00	30.00	90.00	170.00	750.00	900.00

Synthesis of long oligos up to 250 mer requires greater than 99.5% coupling efficiency. This can only be attained by using reagents of exacting specifications, optimized protocols and state-of-the-art instruments. Gene Link has perfected and maintains these standards. *You are invited to compare.*

PCR and sequencing reactions are very robust and can tolerate up to 50% failure/truncated sequence oligos.


However, you are clearly taking a chance by using long oligos synthesized at anything below 99.5% coupling efficiency. See the coupling efficiency table and graph.

Gene Link specializes in long oligos. Our description of a long oligo is 180 mer to 250 mer. *You are invited to compare.*

Purification

Crude oligo is the total yield after chemical synthesis; this contains the full-length product as well as all truncated n-1 sequences. For example, at 99% coupling efficiency the crude yield of a 70 mer is ~50% full-length and ~50% truncated sequences. Gel purification is strongly recommended for all oligos above 50 mer.

Coupling Efficiency and Full Length Oligo Yield

PCR and sequencing reactions are very robust and can tolerate up to 50% failure/truncated sequence oligos. However, you are clearly taking a chance by using long oligos synthesized at anything below 99.5% coupling efficiency.

Coupling Efficiency

Chemical DNA synthesis comprises of multiple reactions to complete a cycle of the appropriate base coupling. Thus the use of reagents of exacting specifications, state-of-theart instruments and optimized software driven protocols are necessary to maintain the highest possible

coupling efficiency. This becomes enormously important when synthesizing a long oligo. Coupling efficiency of 99% or 98% seems very good but on closer examination the yield is almost half for a 40 mer! See the coupling efficiency table.

Long Oligo Scale of Synthesis and Typical Yield

Gel Purified 150 mer oligo typical vield

Scale	A ₂₆₀ Units	nmols	mg
1 µmol	4-6	4+	0.13-0.2
2 µmol	8-12	8+	0.26-0.8

Purity & Yield 98% to ~100% depending on oligo sequence and structure.

Yield will gradually decrease as length of oligo increases. Palindromes, hairpins and high GC content oligos and oligos containing stretches of 3 or more G's induces strong secondary structure and base stacking thus decreasing purity and yield.

Oligo Size and Purification Recommendations									
Scale	Synthesis Scale	Recommended Purification							
1-49 mer	50 nmol	No purification required.							
		Purification dependent							
		upon desired application.							
50-99 mer	200 nmol	Gel purification							
100-199 mer	1 µmol	Gel purification							
200-250 mer	2 µmol	Gel purification							

Custom Oligonucleotide Synthesis

2 M	10	Customer Name: He Customer Number:				er Num Ki Jun				
Utg + Careal a	ers + Card Shenre									
Dip her	$legarme\left(i^{*},i\right)$		iler.	10	14	-	10	$A_{\rm DM}$ in it.		
1704.P1	ATCTICAGACITERETS NO TOSTTINGASOD	CROCKGRABOBISCTIS	31	21,88	18.4	**	288.6	871		¥-*-
770179		COMMANDAA SACAMACOMINICO GALAGO DAGATO SAAAAAA SDACT		31,821	78.8	2.4	221.4	H28		
1704/12	GOODTECTORINGAGO	KTIGECTTSTMOSTMICTEC	- 38	23,986	28.4		296-5	8.50		
110110		TOTOCHROCODEXTOHICATOR		11,185	11.8	16.0	208.0	10.81	BAD HERS	20231.04 Sem 86/13/84
770473	CONTONAMANDANDA	SF IIIACAITTTOINIOTAOTAOTAICEA IIIACAITEANTOCAININGTING IIIIACAIACAITCAININGTING	3	37,494	71.0	41	182.4	8.10		
Nexio	TTESCARCEAAASTERG OKCTINCHARCHCAGER GCARCEPTCCANNAAGE			62.576	H:1	81	1254	-35	1	
morris	ABOHIDONIC ADDINAAPBOCIMOCIMI MICHO DATIWIDACTIAC GAACHETTOMO DADA BACAMAGETIGMAD DADA	INFORTOCIAGO TOTO-	13	10,817	17.8	2.8	1801	10	09:21-8	86/13/84
mpute	GPECANNAGAACIAN GPECTACTACTACAACIA MARTING TANAACITY DHIO TOHOADOOTTOH	H HOOTADOHIOCACC BOMATICOMOCIODACTICI INTERNECIO NAMERICO DA CI INTERNECIONALI INTERNECIONALI CAUTTO AND AND AND AND AND TACINA TECHNICALI INTERNECIONALI IN		13,128	71.0	1.8	114.2	OI	NETT Gid purified oligo orude fallowed b	n. Gol larve represents y gar punket.
		the conjustice. They offer our rel IC relates strong secondary to								Constant.
446 2015	e Mil Hourison Month	ana, W 19532 1.861.	list-ba	tol	111.26	0.1892	i fue	916-305-1111	and: obsupped to	tane everyneitstam
	N 4 0 8 0 8 0 8 0 8	010 128 107 10 10 00		_	-#/m	• 14	122.2	NO-READ HOLES.	properties property bies and participation of contractly standing off- to set a second set	Notify to generally between NPLAS – PTP and resources. Yield will generally decrea distributions, designers, high AC content is destributed to an incenter to index a strong destribute of the mean set index a strong and the set of the set of the set of the destribute of the set of the set of the set physical set of the set of the set of the set physical set of the set of the set of the set physical set of the set of

Unmodified DNA Oligo Synthesis*

Scale of Synthesis	Price (\$)/base
200 nmol scale	2.00
1 µmol scale	3.75
2 µmol scale	6.50

*minimum charge for 15 mer applies. Please visit www.genelink.com for current list prices. Call for institutional discount pricing structure.

Purification

All Gene Link oligos shorter than 40 mer usually do not require any further purification if the application is for PCR or sequencing. Gene Link recommends purification of oligos longer than 50 mer and all oligos destined to be cloned.

		Scale	urification			
Product	50 nmol	200 nmol	1 µmol	2 µmol	10 µmol	15 µmol
Gel Purification	75.00	75.00	150.00	280.00	1500.00	1800.00

Purity and Yield

Gel purified oligo purity is generally between 98% to ~99.9% depending on oligo sequence and structure. Yield will gradually decrease as oligo length increases. Palindromes, hairpins, high GC content oligos and oligos containing stretches of 3 or more G's induce strong secondary structure and base stacking. These are not completely denatured and travel as broad bands on a polyacrylamide gel thus decreasing purity and yield.

