

QUALITY • CONSISTENCY • CONFIDENCE

Gene Link oligos are for demanding applications and consistent results. We believe that investigators who value time and have no room for an experiment to fail due to oligo quality should consider Gene Link. Our numerous quality control steps for each oligo assure confidence.

Actual Gel Photo

An actual gel photo of each oligo is affixed on the oligo report. An

absolute testimony of quality.

Gene Link has raised the standard

since inception over a decade ago.

We have the pictures to prove it!

Superior to "Mass-Produced Factory Oligos"

Gene Link is not an oligo factory. Each oligo is synthesized, processed and quality assured to Gene Link's absolute standards. This includes coupling efficiency monitoring of each base during synthesis and electrophoretic analysis of each oligo on a polyacrylamide gel to visually assess quality.

Coupling Efficiency

We maintain a coupling efficiency threshold of greater than 99.5% for all oligos by using premium reagents of exacting specifications, membrane synthesis, state-of-the-art instruments and optimized software-driven protocols. This may not be evident when comparing short oligos, as PCR and sequencing reactions are very robust and can tolerate up to 50% failure/truncated sequence oligos. However, you are clearly taking a chance by using long oligos synthesized at anything below 99.5% coupling efficiency.

Trityl Monitoring

All Gene Link DNA synthesizers are equipped with trityl monitors for monitoring coupling efficiency of each added base. The instruments are programmed to halt when it falls below the threshold.

See example of routine trityl bars.

Coupling Efficiency and Full Length Oligo Yield

		· · · · · · · ·	
Oligo Size	99.50%	99.00%	98.00%
20	90.916	82.617	68.123
40	82.243	67.573	45.48
60	74.398	55.268	30.363
80	67.301	45.204	20.27
100	60.881	36.973	13.533
120	55.074	30.24	9.034
140	49.821	24.734	6.031
160	45.068	20.23	4.027
180	40.769	16.546	2.688
200	36.88	13.533	1.795
220	33.36	11.07	1.19
240	30.18	9.05	0.8
250	28.7	8.19	0.65
		Coupling efficie	ncy 99.50%
100%	_		
Yield			
		Coupling efficie	ncv 99.00%
100%		etter ing officio	,

Actual trityl coupling efficiency of a 210 mer.

The Gene Link Advantage

- Stringent Quality Control Measures
- Specializing in Long Oligos up to 250 mer
- Trityl Monitoring of All Oligos
- Polyacrylamide Gel
 Photograph of Each Oligo
- All Modifications Available
- All Oligo Types Available
- Easy Online Ordering System
- Online Design and Analysis Tools
- Knowledgeable Technical Support
- Personalized, Friendly Customer Service

Long Oligos

Ask our competitors how often they synthesize 200 to 250 mer oligonucleotides. Gene Link specializes in long oligos.

You are invited to compare.

	Cr	rude Desal	lted	R	PC Purified	1**		Gel Purified	1	
		20 mer oligo Typical yiel			30 mer oligo Typical yield		50 mer oligo* Typical yield			
Scale	A ₂₆₀ Units	nmols	mg	A ₂₆₀ Units	nmols	mg	A ₂₆₀ Units	nmols	mg	
50 nmol	8-10	30+	0.2-0.3	4-5	12+	0.1-0.16	NR* [1-2]	NR* [2-4]	NR* [0.03-0.06]	
200 nmol	20-25	80+	0.6-0.8	8-12	24+	0.26-0.4	4-6	8+	0.13-0.2	
1 µmol	100-120	400+	3-4	40-50	30+	1.3-1.6	20-25	40+	0.6-0.8	
Purity & Yield				Purity 85% t depending on structure. Yield and puri sequences wit Not recommer than 35 mer. **RPC is reverse cartridge; a subs	oligo seque ity will be lo th high GC c nded for olig phase purificat	ower for ontent. los longer ion using a	ture. Yield will gra oligo increase high GC cont taining streto strong second	n oligo sequer dually decreas es. Palindrome ent oligos and ches of 3 or m dary structure s decreasing p	ore G's induces	

*Yield of $30 \mu g/A_{260}$ unit for oligos is calculated for an ~equimolar base composition. Long stretches of a single base or homopolymers will have variable yields. Example for homopolymeric 50 mer: A(50) = $\sim 20/A_{260}$ Unit; G(50) = $\sim 28/A_{260}$ Unit; T(50) = $\sim 35/A_{260}$ Unit and C(50) = $\sim 39/A_{260}$ Unit.

Unmodified DNA Oligo Synthesis*

Scale of Synthesis	Catalog No.	Price (\$)
50 nmol	26-6400-05	0.90
200 nmol	26-6400-02	2.00
1 µmol	26-6400-01	3.75
2 µmol	26-6400-03	6.50
10 µmol	26-6400-10	32.00
15 µmol	26-6400-15	38.00

*minimum charge for 15 mer applies. Please visit www.genelink.com for current list prices. Call for institutional discount pricing structure.

Same Day Oligo*

Design your oligos today and use them tomorrow morning! Investigators who just can not wait order our rush service (order by 12 noon EST). We ship the same day for next early morning delivery in the US and 72 hours for most international destinations.

* Turn-around time stated is for unmodified oligos. Please inquire about purified and modified oligos

Purification

	rification						
Product	Catalog No.	50 nmol	200 nmol	1 µmol	2 µmol	10 µmol	15 µmol
Gel Purification	26-6400-XX	75.00	75.00	150.00	280.00	1500.00	1800.00
Reverse Phase Cartridge	26-6400-XX	30.00	30.00	90.00	170.00	750.00	900.00

Synthesis of long oligos up to 250 mer requires greater than 99.5% coupling efficiency. This can only be attained by using reagents of exacting specifications, optimized protocols and state-of-the-art instruments. Gene Link has perfected and maintains these standards. *You are invited to compare.*

PCR and sequencing reactions are very robust and can tolerate up to 50% failure/truncated sequence oligos.

However, you are clearly taking a chance by using long oligos synthesized at anything below 99.5% coupling efficiency. See the coupling efficiency table and graph.

Gene Link specializes in long oligos. Our description of a long oligo is 180 mer to 250 mer. *You are invited to compare.*

Purification

Crude oligo is the total yield after chemical synthesis; this contains the full-length product as well as all truncated n-1 sequences. For example, at 99% coupling efficiency the crude yield of a 70 mer is ~50% full-length and ~50% truncated sequences. Gel purification is strongly recommended for all oligos above 50 mer.

Coupling Efficiency and Full Length Oligo Yield

PCR and sequencing reactions are very robust and can tolerate up to 50% failure/truncated sequence oligos. However, you are clearly taking a chance by using long oligos synthesized at anything below 99.5% coupling efficiency.

Coupling Efficiency

Chemical DNA synthesis comprises of multiple reactions to complete a cycle of the appropriate base coupling. Thus the use of reagents of exacting specifications, state-of-theart instruments and optimized software driven protocols are necessary to maintain the highest possible

coupling efficiency. This becomes enormously important when synthesizing a long oligo. Coupling efficiency of 99% or 98% seems very good but on closer examination the yield is almost half for a 40 mer! See the coupling efficiency table.

Long Oligo Scale of Synthesis and Typical Yield

Gel Purified 150 mer oligo typical vield

		······································					
Scale	A ₂₆₀ Units	nmols	mg				
1 µmol	4-6	4+	0.13-0.2				
2 µmol	8-12	8+	0.26-0.8				

Purity & Yield 98% to ~100% depending on oligo sequence and structure.

Yield will gradually decrease as length of oligo increases. Palindromes, hairpins and high GC content oligos and oligos containing stretches of 3 or more G's induces strong secondary structure and base stacking thus decreasing purity and yield.

Oligo Size and Purification Recommendations									
Scale	Synthesis Scale	Recommended Purification							
1-49 mer	50 nmol	No purification required.							
		Purification dependent							
		upon desired application.							
50-99 mer	200 nmol	Gel purification							
100-199 mer	1 µmol	Gel purification							
200-250 mer	2 µmol	Gel purification							

Custom Oligonucleotide Synthesis

2 all	10	Customer Name: He Customer Number:				er Num Ki Jun				
Utg + Careal a	ers + Card Shenre									
Dip her	$legarme\left(i^{*},i\right)$		iler.	10	14	-	10	$A_{\rm DM}$ in it.		
1704.P1	ATCTICAGACUTERETSI MIC TODAT INIGABOLIC	CROCKGRABOBISCTIS	31	21,88	18.4	**	288.6	871		¥-*-
770179		COMMANDAA SACAMACOMINICO GALAGO DAGATO SAAAAAA SDACT		31,821	78.8	2.4	221.4	H28		
1704/12	GOODTECTORINGAGO	KTIGECTTSTMOSTMICTEC	- 38	23,986	28.4		296-5	8.50		
110110		TOTOCHROCODEXTOHICATOR		11/16	11.8	16.0	208.0	10.81	BAD HERS	20231.04 Sem 86/13/84
770473	CONTONAMANDANDA	SF IIIACAITTTOINIOTAOTAOTAICEA IIIACAITEANTOCAININGTING IIIIACAIACAITCAININGTING	3	37,494	71.0	41	182.4	8.10		
Nexio	TTESCARCEAAASTERG OKCTINCHARCHCAGER GCARCEPTCCANNAAGE			62.576	H:1	81	1254	-35	1	
morris	ABOHIDONIC ADDINAAPBOCIMOCIMI MICHO DATIWIDACTIAC GAACHETTOMO DADA BACAMAGETIGMAD DADA	INFORTOCIAGO TOTO-	13	10,817	17.8	2.8	1801	10	09:21-8	86/13/84
mpute	GPECANNAGAACIAN GPECTACTACTACAACIAN MARTING TANAACITY DHIO TOHOADOTOTION	H HOOTADOHIOCACC BOMATICOMOCIODACTICI INTERNECIO NAMERICO DA CI INTERNECIONALI INTERNECIONALI CAUTTO AND AND AND AND AND TACINA TECNINA AND AND		13,128	71.0	1.8	114.2	OI	NETT Gid purified oligo orude fallowed b	n. Gol larve represents y gar punket.
		the conjustice. They offer our rel IC relates strong secondary to								Constant.
446 2015	e Mil Hourison Month	ana, W 19532 1.861.	list-ba	tol	111.26	0.1892	i fue	916-305-1111	and: obsupped to	tane everyneitstam
		010 128 107 10 10 00		_	-#/m	• 14	122.2	NO-READ LODGE.	properties property bies and participation of contractly standing off- to set a second set	Notify to generally between NPLAS – PTP and resources. Yield will generally dense describes of the mean to index strong methods of the mean to index strong describes. These are not applicable base to palpergramming gen there become any of

Unmodified DNA Oligo Synthesis*

Scale of Synthesis	Price (\$)/base
200 nmol scale	2.00
1 µmol scale	3.75
2 µmol scale	6.50

*minimum charge for 15 mer applies. Please visit www.genelink.com for current list prices. Call for institutional discount pricing structure.

Purification

All Gene Link oligos shorter than 40 mer usually do not require any further purification if the application is for PCR or sequencing. Gene Link recommends purification of oligos longer than 50 mer and all oligos destined to be cloned.

		Scale	of Synthesi	s Price (\$)/p	ourification	
Product	50 nmol	200 nmol	1 µmol	2 µmol	10 µmol	15 µmol
Gel Purification	75.00	75.00	150.00	280.00	1500.00	1800.00

Purity and Yield

Gel purified oligo purity is generally between 98% to ~99.9% depending on oligo sequence and structure. Yield will gradually decrease as oligo length increases. Palindromes, hairpins, high GC content oligos and oligos containing stretches of 3 or more G's induce strong secondary structure and base stacking. These are not completely denatured and travel as broad bands on a polyacrylamide gel thus decreasing purity and yield.

