5-Ethynyl-dU (5EdU)

<table>
<thead>
<tr>
<th>Category</th>
<th>Click Chemistry</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modification Code</td>
<td>5EdU</td>
</tr>
<tr>
<td>Reference Catalog Number</td>
<td>26-6615</td>
</tr>
</tbody>
</table>

5 Prime: Y
3 Prime: Y
Internal: Y

Molecular Weight (mw): 314.19

This modification is on HOLD pending licensing arrangements with baseclick GmbH

5-Ethynyl-dU offers convenient click conjugation with an azide to generate a label rigidly attached to one of the oligonucleotide bases. The alkyne group is separated from the oligo by an 11-atom spacer arm, which serves to reduce steric interaction between the reactive group and the oligo. The presence of the alkyne allows the user to use “Click Chemistry” (a [3+2] cycloaddition reaction between alkynes and azides, using copper (I) iodide as a catalyst) to conjugate it to a variety of azide-containing labels/tags (e.g., fluorescent dyes, biotin, or oligos, with extremely high regioselectivity and efficiency (1,2). When conjugation to an azide-oligo is desired, preparation of the azide-oligo can be achieved using either an Azidobutyrate NHS Ester or the 5’-Bromohexyl modifier (see their respective tech sheets for details). Click chemistry can be used to form short, cyclic oligos that can be used as research tools in various biophysical and biological studies (3). In particular, they have considerable potential for in vivo work, as cyclic oligos are known to be very stable in serum for up to several days.

References