Product Specifications

Custom Oligo Synthesis, antisense oligos, RNA oligos, chimeric oligos, Fluorescent dyes, Affinity Ligands, Spacers & Linkers, Duplex Stabilizers, Minor bases, labeled oligos, Molecular Beacons, siRNA, phosphonates

Locked Nucleic Acids (LNA); 2'-5’ linked Oligos

Oligo Modifications

For research use only. Not for use in diagnostic procedures for clinical purposes.

Methyl Phosphonate dA (mp)dA

<table>
<thead>
<tr>
<th>Category</th>
<th>Nuclease Resistance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modification Code</td>
<td>mp-dA</td>
</tr>
<tr>
<td>Reference Catalog Number</td>
<td>26-6611</td>
</tr>
<tr>
<td>5 Prime</td>
<td>Y</td>
</tr>
<tr>
<td>3 Prime</td>
<td>Y</td>
</tr>
<tr>
<td>Internal</td>
<td>Y</td>
</tr>
<tr>
<td>Molecular Weight (mw)</td>
<td>311.24</td>
</tr>
</tbody>
</table>

Methylphosphonated oligos are deoxynucleoside amidites modified such that, when incorporated into an oligonucleotide, that base position will have a (electrically neutral) methyl phosphonate backbone linkage instead of the standard (negatively charged) phosphodiester linkage. Oligos containing one or more methyl phosphonate linkages will be resistant to nuclease degradation at those positions, and the lack of charge improves intracellular transport. Because of these properties, methyl phosphononlated oligos have been explored as anti-sense reagents (1). However, since methyl phosphonate linkages lower the oligo’s cellular uptake (2) as well as the Tm of the duplex formed with its RNA target (3), and, most importantly, also interferes with activation of RNase H activity (4), considerable care must taken in choosing which, and how many, methyl phosphonate linkages to incorporate into a putative anti-sense oligo. In that regard, we note that 2’-O-Methyl RNA oligos containing a single 3’-end methyl phosphonate “cap” (to eliminate 3’-exonuclease degradation) have been successfully used as anti-sense reagents (5). In addition, DNA extension primers containing such a “cap” have been used to characterize the nuclease activity of the yeast telomerase complex (6). Methylphosphononlated anti-sense oligos have also been used successfully to “mask” sites in U1 and U2 snRNPs required for spliceosome formation, and thus interfere with miRNA splicing (7). Many of the unique properties of methylphosphonated oligos are due to the introduction of chirality into the phosphodiester backbone by the methyl group (8).

References
