Spacer 9 is a triethylene glycol chain that is 9 atoms long (6 carbons + 3 oxygens), and is used to incorporate a spacer arm into an oligonucleotide. Spacer 9 can be incorporated in consecutive additions whenever a longer spacer is required. Spacer 9 has been used to form non-nucleotide bridges in hairpin loops in oligonucleotides (1), for linking oligonucleotides to epitopes for drug development (2), and for solid-phase immobilization of hybridization probes (3). Multiple incorporation of Spacer 9 has been used to form long, flexible linker arms between the two domains (double-helix forming and triple-helix forming, respectively) of a bifunctional DNA oligonucleotide, in order to maximize the binding flexibility of the two domains for their respective targets (4). This oligo was used to form a peptide nucleic acid (PNA)-DNA conjugate for use in site-directed recombination applications.

References